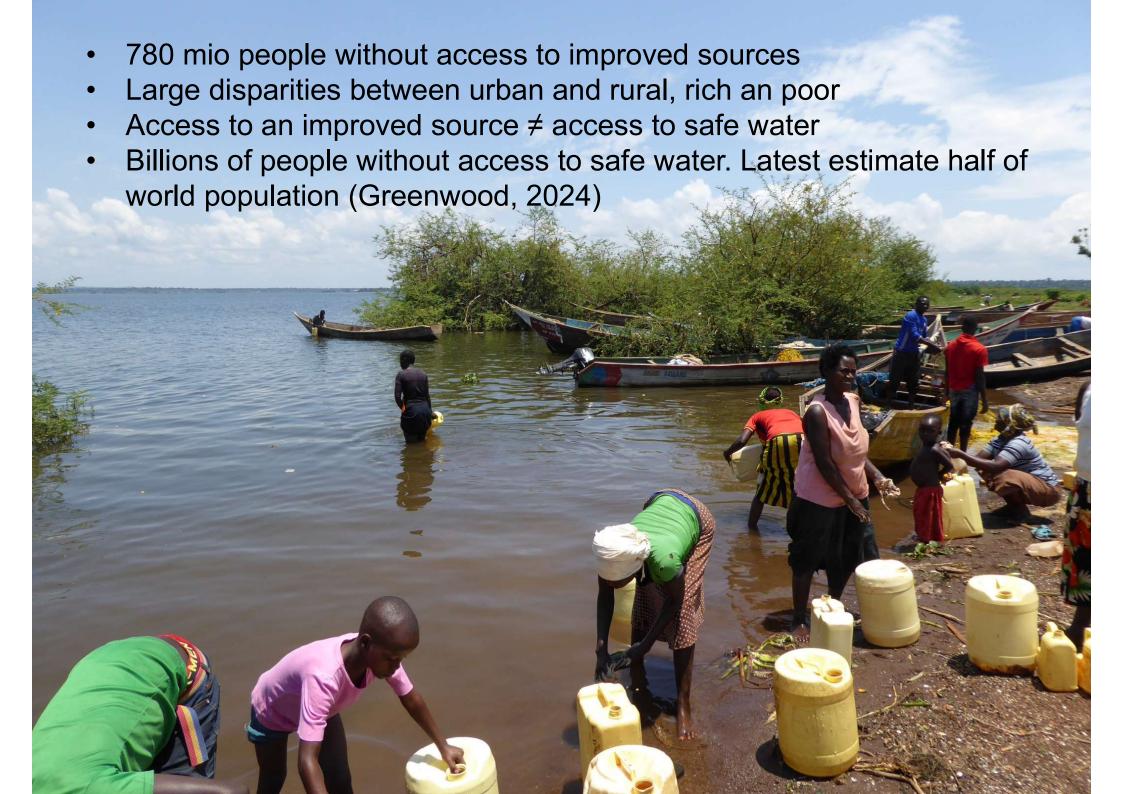


Water Treatment and Safe Storage

EPFL, ENV 402: Sanitary Engineering in Developing Countries 2024 Loïc Fache

A little about me


- Bsc & Msc Environmental engineering EPFL (2023)
- Project officer in the water safety management group (Eawag-Sandec) (Feb 2024- present)
- Looking at safe water supply, prevention against recontamination, and participatory processes for safe water management

Learning objectives

- Understand what kind of strategies are required to provide sustainable access to safe water and support its consistent consumption in low income areas
- Understand the principles, strengths and limitations of water treatment and safe storage technologies that can be applied in this context
- 3. Know what kind of financial and business elements have to be considered for drinking water treatment at community scale (water kiosks) and at household scale (household water treatment)
- 4. Be aware of behavior change interventions required to increase demand for safe water

UN General Assembly resolution, July 2010

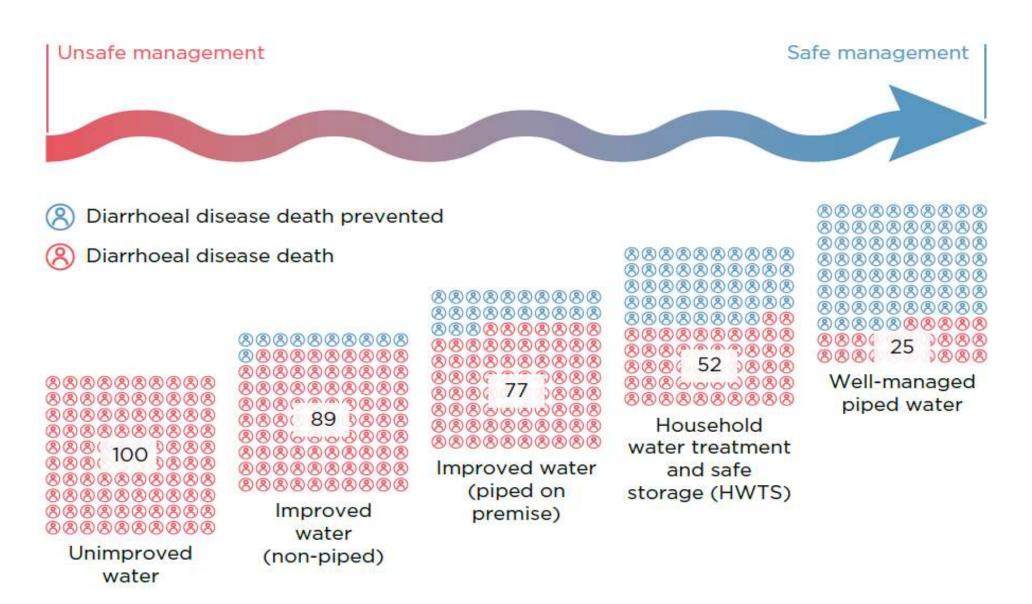
"recognizes the right to safe and clean drinking water and sanitation as a human right that is essential for the full enjoyment of life and all human rights."

Criterion	UN Human Rights Council 2010
Sufficient quantity	Availability
Continuity of service	Availability
Safe for health	Quality/safety
Aesthetically acceptable	Acceptability
Time/distance required to collect	
Suitable for use by all, including young, old, disabled, etc	Accessibility
Affordable	Affordability

SERVICE LEVEL	DEFINITION	
SAFELY MANAGED	Drinking water from an improved water source that is located on premises, available when needed and free from faecal and priority chemical contamination	
BASIC	Drinking water from an improved source, provided collection time is not more than 30 minutes for a round trip, including queuing	
LIMITED	Drinking water from an improved source for which collection time exceeds 30 minutes for a round trip, including queuing	
UNIMPROVED	Drinking water from an unprotected dug well or unprotected spring	
SURFACE WATER	Drinking water directly from a river, dam, lake, pon stream, canal or irrigation canal	
TWO IN TO THE TWO		

Note: Improved sources include: piped water, boreholes or tubewells, protected dug wells, protected springs, rainwater, and packaged or delivered water.

SDG 6.1


By 2030 achieve universal and equitable access to safe and affordable drinking water for all

 proportion of population using safely managed drinking water

Diarrhoea reduction associated with improving drinking water services

Source: WHO WASH Strategy 2018-2025


Elements of sustainable safe water consumption

Technology

Drinking water treatment

- Community level
- Household level

Safe Storage

Finances

- Business management
- Demand
- Price of water
- Price of HWTS products
- Supply chains

Behaviour

- Demand
- Know-how & capacity
- Consistent consumption

K10SK (10.10 * cme

Technology

Drinking water treatment

- Community level
- Household level

Safe Storage

- Business management
- Demand
- Price of water
- Price of HWTS products
- Supply chains

Behaviour

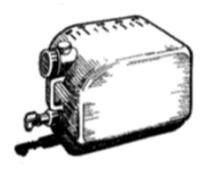
- Demand
- Know-how & capacity
- Consistent consumption

eawag aquatic research 8000

Physical

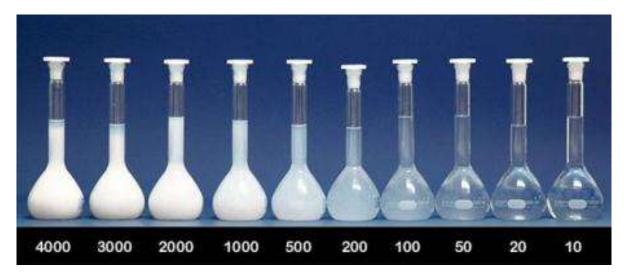
- boiling
- heating (fuel and solar)
- settling
- filtering
- exposing to the UV radiation in sunlight or lamps

Chemical


- coagulation-flocculation and precipitation
- adsorption
- ion exchange
- chemical disinfection with germicidal agents (e.g. chlorine)

Biological

 biologically active layer in slow sand filters.


Water treatment at different scales

Large scale centralized system	Decentralized, community treatment or Water Kiosk	Household water treatment
A large number of people are supplied – high quality requirements	System less complex > easier O&M	Low-tech solutions
Complex systems	> lower cost	Responsibility for financement, O&M is with household
High cost (investment & operation)	Operated by community, challenge for capacity building	Need to create demand and build
Complex O&M	O&M Financing through the sale of	capacity
Responsibility with government or private company	treated water	Treatment at point of consumption reduces risk of recontamination
	Need to create demand	

Threat of turbidity for water treatment

< 5 NTU is generally acceptable to consumers

Turbid waters challenge treatment processes.

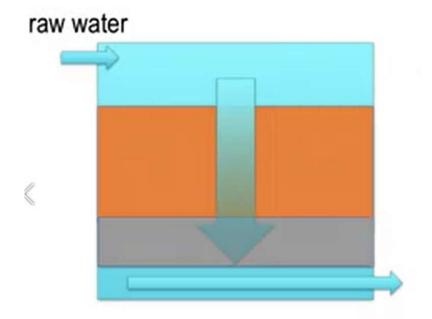
- use up chemical disinfectants
- cause premature clogging of filters
- block UV radiation
- stimulate bacterial growth

Coagulation & Flocculation

Coagulation and flocculation remove turbidity (suspended solids) and can reduce color and some dissolved componds.

Coagulants used:

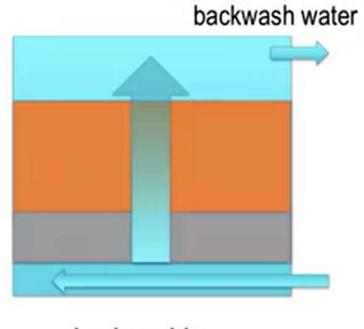
<u>Alum</u> Aluminium sulfate $(Al_2(SO_4)_3 \cdot nH_2O)$


- Widely available, inexpensive
- Crystals or powder
- •Iron salts (FeCl₃ or Fe₂(SO₄)₃ ·nH₂O)
- Less common
- Less soluble than aluminium
 - ⇒ broader effective pH range
- Crushed seed of Moringa oleifera

Process

- **Coagulation**: metal ions (e.g. Al⁺³) destabilize negatively charged colloids, and form hydroxide flocs (Al(OH)₃).
 - Alkalinity addition may be necessary (pH is reduced)
- Flocculation: flocs collide and grow.
- Sedimentation: the growing flocs settle out of solution.
- Filtration: remaining suspended flocs are removed.

Rapid Sand Filtration

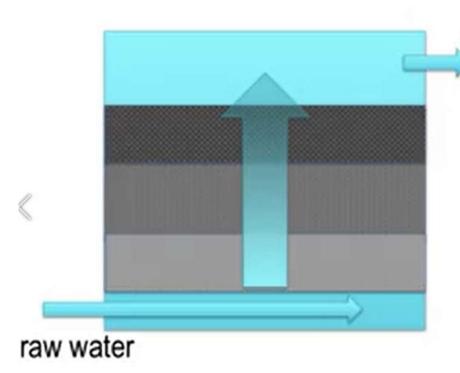


supernatant water

sand layer

gravel layer

underdrain



backwashing

Downflow filtratrion Approximately 1-40 m/h

Roughing Filtration

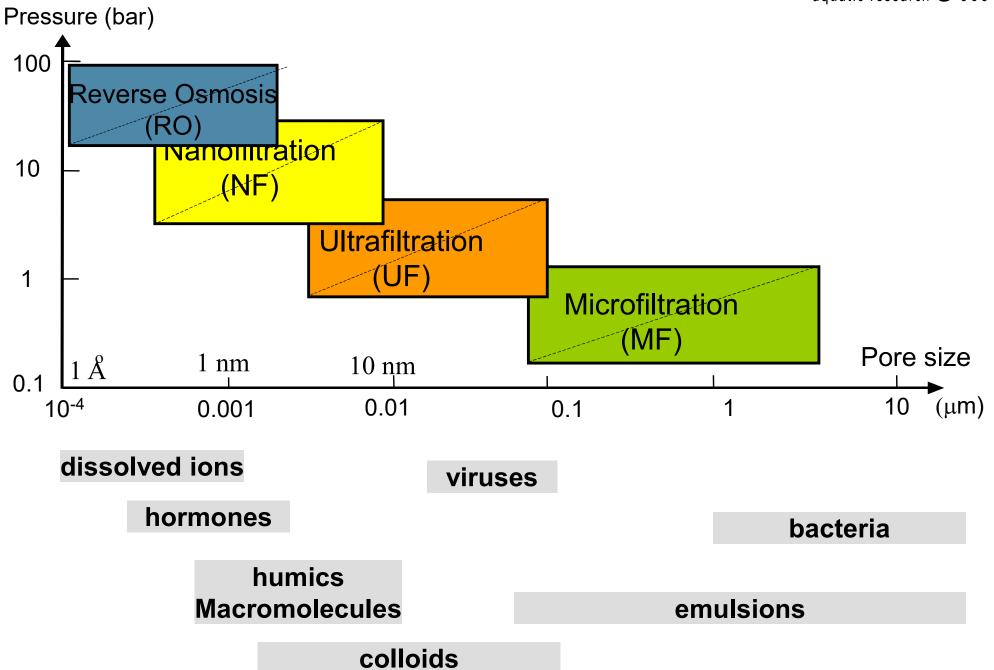
Upflow layer filtratrion Approximately 0.3-1.5 m/h

treated water

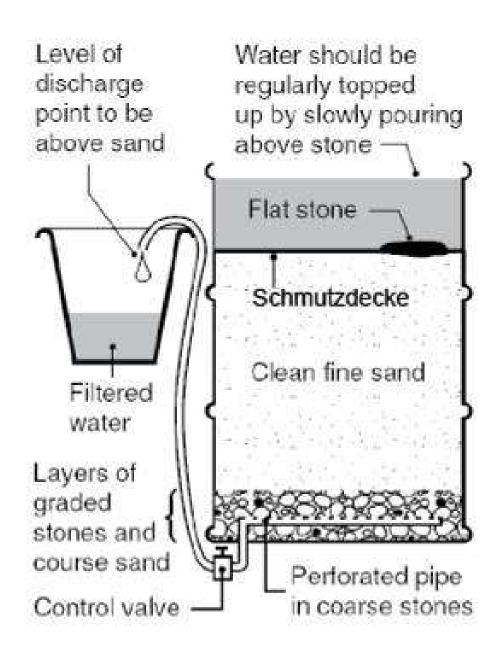
- Gravel or other filtration material
- 4-24 mm
- Size decreases with flow direction
- Washing by draining the filter or manually removing the top layer

PHYSICAL WATER TREATMENT

Sand-, Gravel & Ceramic Filtration


Туре	Efficiency	Applicability
Roughing Filtration	Removal of turbidity	Semi-centralizedOnly pretreatmentLocal production
Rapid Sand Filtration	Removal of turbidity	Semi-centralizedOnly pretreatmentLocal production
Slow Sand Filtration	1-2 Log Bacteria, Protozoa, Heavy metals, organic matter	Centralized/ HouseholdMedium costLocal production
Ceramic Filtration	2 Log Bacteria & Protozoa no viruses	Household Low cost Local production

Slow Sand Filtration


Microbial performance	 1-2 Log Bacteria, Protozoa, Heavy metals, organic matter Limited effectiveness against viruses
Advantages	 Removal of organic matter, heavy metals Bio-reactor, reduced risk of recontamination Very robust and local materials for construction No requirement for chemicals or energy
Limitations	 Limited effectiveness against viruses Needs matured biological layer to be effective («Schmutzdecke»); build up >10 days Schutzdecke is destroyed if sand dries out Filter is clogging at high turbidity (>100 NTU)
Application	HouseholdCentralized treatment

Biosand filter

- 1. Predation: Microorganisms within the "schmutzdecke" (biological layer) consume bacteria and other pathogens found in the water.
- 2. Mechanical trapping and adsorption: Sediments, cysts and worms trapped in the spaces between the sand grains/ or adsorbed to the material.
- 3. Natural death: Food scarcity, suboptimal temperatures and short life span will cause pathogens to die off.

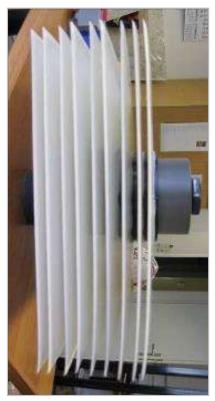
Household Design

Biosand Filters

eawag aquatic research 8000

300,000 distributed www.purefilteredwater.com

Cost for household products: ~30 USD

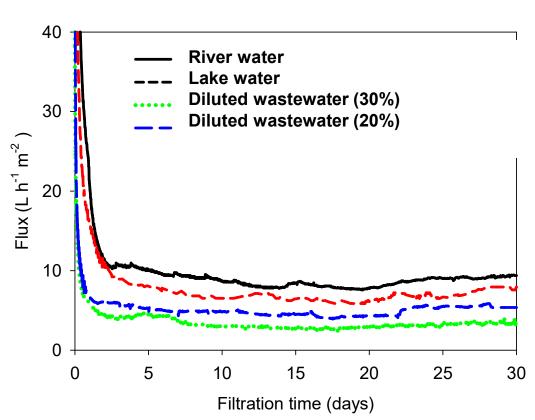

Membrane Filtration

Туре	Efficiency	Applicability
Membrane Filtration (Microfiltration)	2-3 Log Bacteria & Protozoa, no Viruses	Centralized, Semi-centralized, Household
Membrane Filtration (Ultrafiltration)	4 Log Bacteria & Protozoa, 4-5 Log Viruses Colloids	Centralized, Semi-centralized, Household
Membrane Filtration (Reverse Osmosis)	>5 Log Bacteria, Protozoa, Viruses Humics, dissolved ions	 Centralized, Semi-centralized high-tech very expensive discharge or brine problematic

Membrane Filtration

- Polymeric membranes used for filtration (fe. Polyethersulfon (PES))
 hollow fiber membranes/ flat sheet membranes
- Systems with smaller pore size require higher pressure
- For traditional systems: regular backflushing and disinfection of membranes required

Laminated flatsheet membranes


Hollow fibre and capillary membranes

Gravity Driven Membranes

Flux stabilization

- -No crossflow
- -No backflush
- -No cleaning

Flux stabilizes on a level of 4-10 (L h⁻¹m⁻²) for at least 2 years

Membrane Filtration (traditional systems)

Mainly reverse osmosis in water kiosks

Microbial performance	 Depending upon pore size of membrane: (see slide 22)
Advantages (gravity driven system)	High efficiencyHigh flowTurbidity is reduced
Limitations	 Fouling of membranes -> Requires regular back-flushing and chemical disinfection Pretreatment required for turbid water Complex system, high cost Product must be imported in most areas Requires supply chain for replacement parts Difficult discharge of brine in RO-systems Recontamination risk during storage

Membrane Filtration (GDM)

Microbial performance	Micro- or Ultrafiltration: depending upon pore size of membrane
Advantages	 Simple to use Works well with turbid water (GDM) No requirement for chemicals or energy Formation of a biofilm on membranes (GDM)
Limitations	 Some systems require regular backflushing (Skyjuice) Membranes must be imported -> difficult supply chains Medium cost Recontamination risk during storage
Application	HouseholdCommunity scaleCentralized

Example of filters

Lifestraw personal

Microfiltration, 100nm sucking, backflush Cost: 25 USD/ 40 USD

Sawyer Water Filter

Ultrafiltration, 20nm Siphon-filter hydrostatic pressure, backflush Cost: 50 USD

Martin Membranes

Ultrafiltration, 20nm hydrostatic pressure, no backflush

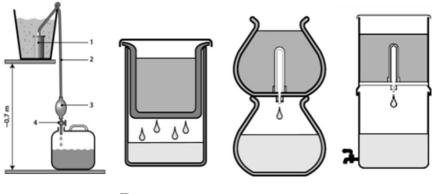
Cost: 60 USD

Ceramic filtration

Water is filtered through porous ceramic material.

Removal effectiveness depends on size of the pores in the clay. Most filters are effective at removing protozoa and bacteria, but not at removing viruses.

Higher quality ceramic filters treated with bacteriostatic silver in the <u>lab</u>:


- Protozoa reduction > 99.9% (3 log)
- Bacteria reduction > 99.99% (4 log)

Slow flow: 1-2 litres per hour (per candle)

Regular cleaning required if turbid water is used

Cost about 10 to 30 USD

Siphon filter

Porous jar

Candle with jars

Microbial performance	2 Log removal of bacteria and protozoaLimited effectiveness against viruses
Advantages	 Simple to use Turbidity is reduced Local production possible One-time investment No requirement for chemicals or energy
Limitations	 Recontamination risk during storage Quality of locally produced filters is variable Requires regular cleaning (especially if water is turbid) Low filtration rate (1-3 Liters per hour) Fragility: frequent filter breakage and difficult transport
Application	Household

Ceramic filters in Cambodia – direct sales and MFI

Product	Tunsai ceramic filter
Organizations	Hydrologic social enterprise
Sales approach	Door-to-door sales by trained sales agents and in MFI group meetings Tunsai: 12.5 USD Super-Tunsai: 22 USD
Outcome	Direct sales: 16.4% of HHs
	MFI groups: 43.1% of members High rates of consistent use (74%)

- Microfinance loans quickly outperformed direct sales model → Financing is a key trigger for purchase
- Importance of design: Super Tunsai outsold Tunsai by 17:1

Boiling

eawag aquatic research 8000

The oldest method

Never applied at centralized scale

Often at household scale

Ideally, the water is cooled and stored in the same vessel in order to minimize chances of re-contamination.

Effective against almost all pathogens

Exceptions: some spores like anthrax

Question: How long should water be boiled?

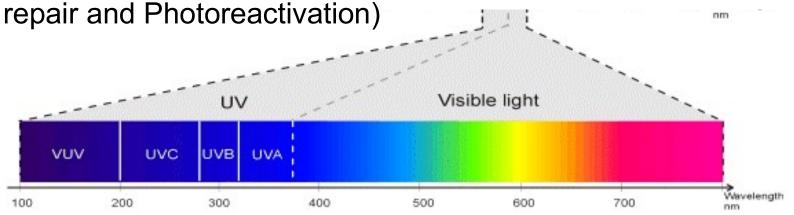
Pasteurization

Microorganisms	Temperature for 100 % Destruction		
	1 Min.	6 Min.	60 Min.
Enteroviruses			62 °C
Rotaviruses		63	°C for 30 Min.
Faecal Coliforms	at 80 °C com	plete destruction	
Salmonellae		62 °C	58 °C
Shigella		61 °C	54 °C
Vibrio Cholera			45 °C
Entamoeba Histolytica Cysts	57 °C	54 °C	50 °C
Giardia Cysts	57 °C	54 °C	50 °C
Hookworm Eggs and Larvae		62 °C	51 °C
Ascaris Eggs	68 °C	62 °C	57 °C
Schistosomas Eggs	60 °C	55 °C	50 °C
Taenia Eggs	65 °C	57 °C	51 °C

(Feachem, 1983)

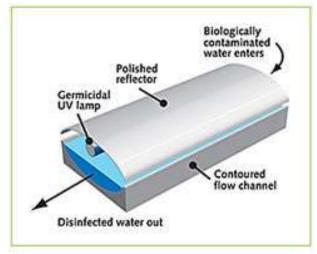
Water does not have to be boiled in order to kill 99.9% of the microorganisms. Heating up the water to 70°C for a few minutes has the same effect.

Boiling & Pasteurization



Microbial performance	Disinfects all classes of pathogens
Advantages	Common technologyCan be combined with cooking and tea boilingTreats turbid water!
Limitations	 Recontamination risk during storage High cost for fuel Indoor air pollution Time consuming application
Application	Boiling only at household levelCommunity applications for pasteurization

Ultraviolet irradiation (UV-C)


- Germicidal activity of UV-C-radiation (200-320 nm) used for water disinfection since early 20th century.
- All waterborne pathogens are disinfected at sufficiently high doses:
 - Bacteria, Cryptosporidium & Giardia: 1-10 mJ/cm²
 - Viruses & bacterial spores: 30-150 mJ/cm²
- Low pressure mercury UV-lamps: 50-150 mJ/cm²
- With too low doses of UV radiation: Ability of bacteria and other microbes to repair UV-induced damage and restore infectivity (Dark

UV radiation

Microbial performance	Effective against bacteria, protozoa and viruses
Advantages	 Simple to use No change in taste in water Very fast treatment
Limitations	 Highly turbid water needs pretretment Requires electricity Requires supply chain for replacement parts
Application	HouseholdCommunity Scale

Cost for household product: 80 USD Low cost option under development

Solar Disinfection (SODIS)

- Place the bottles on a corrugated iron sheet

 Or put them on the roof...
- The water is now ready for consumption

 Expose the bottle to the sun from morning until evening for at least six

hours

- Contaminated water is filled into transparent plastic bottles and exposed to the sunlight for 6 hours.
- During exposure sunlight destroys the pathogenic bacteria and viruses.
- A solar radiation intensity of at least 500 W/m² is required during 5 hours
- A synergy of UV-A radiation and temperature occurs if the water temperature raises above 50°C
 - → after 1 hour of solar exposure the water is safe for consumption

Solar Disinfection

Microbial performance	 Effective against bacteria, protozoa and viruses (depending upon weather and container material)
Advantages	 Uses locally available materials (sunlight and PET-bottles) Very low cost No change in taste in water Recontamination unlikely if stored in bottles used for treatment
Limitations	 Highly turbid water needs pretretment Weather dependency Long treatment time (some hours to two days) Limited volume of water that can be treated Requires a large supply of intact, clean and properly sized bottles
Application	Only household

CHEMICAL TREATMENT

Chlorination

eawag aquatic research 8000

- Free Chlorine, commonly used
- NaOCI, liquid Sodium Hypochlorite,
- Ca(OCI)₂ solid Calcium Hypochlorite, Bleaching Powder
- Sodium dichloroisocyanurate (NaDCC) (Tablets, higher shelf-life)
- •Water quality influences the inactivation. FRC consumed by dissolved organic matter.
- ➤ Turbidity < 5 NTU
- >6.8 < pH < 7.2
- Sometimes used: silver, iodine (not for longterm use)
- → Highly turbid water needs to be pretreated
- → Contact time: about 30 Minutes

Only method that provides residual disinfection!
Protection against recontamination

Particular resistance of Cryptosporidium!

Dosage of chlorination

WHO recommendation for chlorination at the tap stand: 0.2 to 1.0 mg/L to protect water from recontamination

This concentration is not sufficient to protect water from unimproved open water sources (higher chlorine demand, more nutrients for regrowth)

- >2 mg/L <10 NTU
- >4 mg/L for 10-100 NTU
- ➤ This will provide 0.2mg/L after 24h storage

Water with higher turbidities: no chlorination!

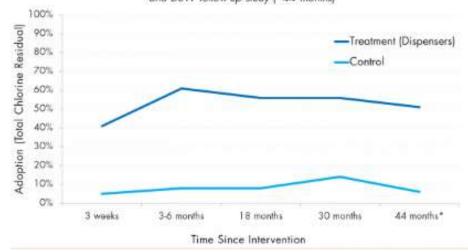
➤ Formation of Trihalomethanes (potentially cancerogenic & bad smell)

Chlorination

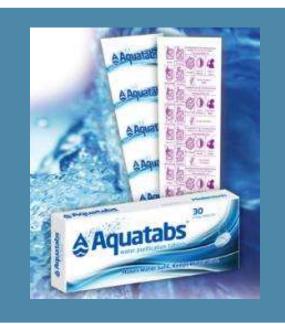
Microbial performance	 2 Log removal of bacteria and some viruses Ineffective against protozoan cyst such as Cryptosporidium parvum
Advantages	 Residual protection against recontamination Simple to use Local production is possible Low cost
Limitations	 Highly turbid water needs pretretment Strong taste and odour of treated water Dosage might be difficult Contact time essential for chemicals to react
Application	Household levelCommunity scaleCentralized

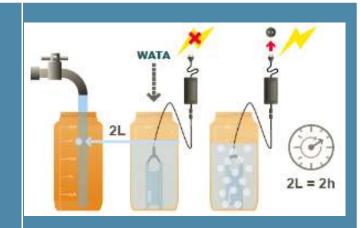
Chlorine dispenser

eawag aquatic research 8000


Marketing example

Product	Chlorine Dispenser
Organizations	Innovations for Poverty Action (IPA)
Sales approach	Cost for chlorine is integrated into the price of water 0.5 USD per year per person
Outcome	Evaluation in Kenya: 50-61% of people used chlorine dispenser regularly (compared to 6-14% in control group), and still used it after 2 years.


- The dispenser is a plastic tank with a valve that delivers a precise dose of chlorine at the water source.
- Community education & 1 community member is responsible for the dispenser
- Regular maintenance and supply of chlorine



www.poverty-action.org/chlorinedispensers

Safe Water System Liquid chlorine & storage

- Local hypochlorite generation
- Local Marketing of stabilized product
- Safe storage
- Low cost product

Aquatabs

- Sodium dichloroisocyanurate (NaDCC)
- shelf life 5 years

WATA

- In-situ chlorine production using electrolysis to produce 6 g/L chlorine solution from saturated brine (NaCl-Soluation)
- Application in schools, health centers

Selection criteria for treatment methods

- There is no "best" water treatment system. The choice depends on local criteria, such as water quality at the source, cultural preferences or financial possibilities.
- Important selection criteria for products are:
 - Effectiveness
 - Durability (including no need for frequent replacement of parts)
 - Attractive design
 - Easy operation & maintenance
 - Affordability & cultural acceptability
- To entirely remove microbiological and chemical contamination as well as turbidity, a combination of different systems might be necessary.

Water Treatment Technologies

K108K (10.10 * cme

Technology

Drinking water treatment

- Community level
- Household level

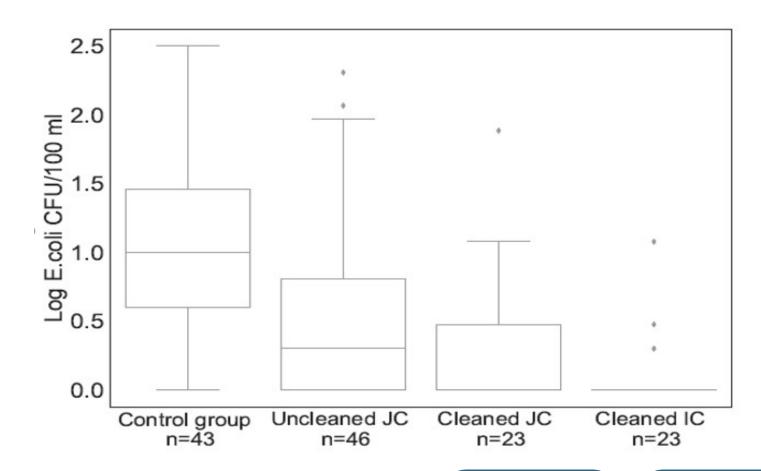
Safe Storage

- Business management
- Demand
- Price of water
- Price of HWTS products
- Supply chains

Behaviour

- Demand
- Know-how & capacity
- Consistent consumption

Safe water at source ≠ safe at consumption


- •Unreliable operation and supply (water supply networks)
- Leaky water distribution networks
- •High risk of contamination during transport and handling

Disinfection and cleaning of storage containers

- No chlorination at the kiosk
- No cleaning of jerrycan
 - Normal jerrycans

Strategy I

Chlorination at the kiosk No cleaning of jerrycan Normal jerrycans

Strategy II

- Chlorination at the kiosk
- Cleaning of jerrycan
- Normal jerrycans (JC)

Strategy III

- Chlorination at the kiosk
- Cleaning of jerrycan
- Improved jerrycans (IC)

Likelihood of contamination in the home

Observedwater management practice

Water Collection

- Well with hand pump
- Container rinsed with water, wiped with hand

Return Journey Home

- Collection container carried on head
- · Most containers without lids

Transfer to Storage Container

 Water poured through a 'filter cloth' into storage container

Storage and Use

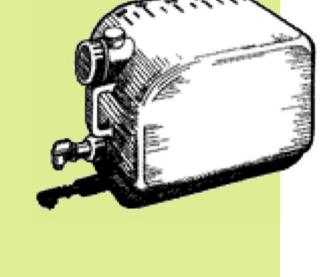
- · Drawn using a beaker, ladle, or gourd
- Storage container kept covered

Potential detoriation factors

- Dirty hands
- Dirty collection containers
- Dirty filtration cloths
- Dirty storage contaniers
- Insects
- Regrowth of pathogens

(Trevett, 2005)

Safe water storage


A properly designed safe storage system must:

be affordable, portable, durable, and easy to use

have a tap to withdraw water in a sanitary manner (reduce contamination by hands or dipping utensils)

Have a coverable (screw-cap) opening for filling and cleaning

be also suitable for water collection and transport

Elements of sustainable safe water consumption

K10SK (10.10 - cme

Technology

Drinking water treatment

- Community level
- Household level

Safe Storage

- Business management
- Demand
- Price of water
- Price of HWTS products
- Supply chains

Behaviour

- Demand
- Know-how & capacity
- Consistent consumption

Business Management of Water Kiosks

Financing of investment cost

Financing of O&M

Ownership Model

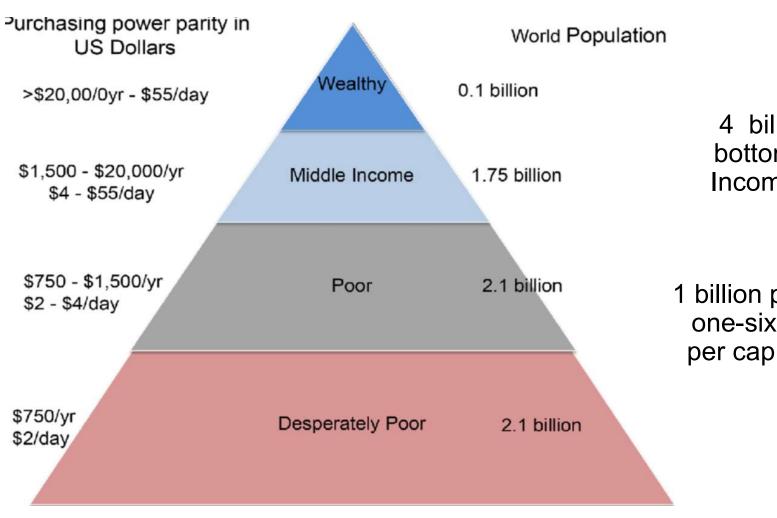
Capacity

- -Technical
- -Business Mgmt

Create income:
- Demand!

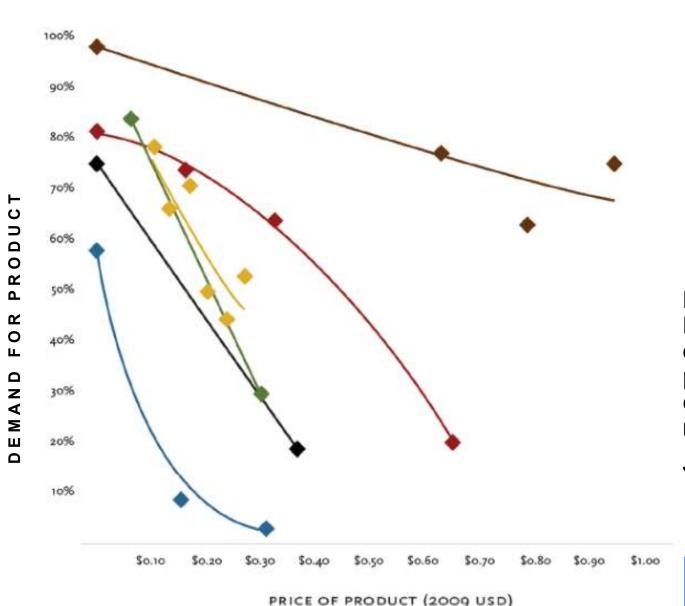
Acceptable price of water?

Additional revenue?


Business model approaches of Water Kiosks

Ownership model	Key activities; Value proposition	Customer relation and marketing	Nr of Customer s
 Public private partnership Community managed system Private Enterprise 	 Sale of safe water Sale of additional products (health products, electricity) Transport of water 	 Community training (often neglected) Behaviour change campaign Branding 	 Influenced by: Population density Other water sources Attitude, Norms, Risk Awareness (Promotion)
Key resources	Cost structure	Revenue structure	
TechnologyManagementO&M Capability	 Capex Opex (salaries, maintenace, electricity etc.) 	 Product sale Donor support (Capex!) Government support Community support 	

The world economic pyramid


4 billion people at the bottom of the pyramid. Income less than 1500 USD/year

1 billion people — roughly one-sixth of humanity — per capita income is less than \$1 per day

Prahalad (2009)

Influence of price on take up

◆ DEWORMING, KENYA ①
 ◆ BEDNETS IN CLINICS, KENYA ②
 ◆ BEDNET VOUCHERS, KENYA ③
 ◆ WATER DISINFECTANT, ZAMBIA ⑥
 ◆ WATER DISINFECTANT, KENYA ⑦

Experiments conducted by Poverty Action Lab to assess the effect of price on use of health products (moskito nets, water disinfectant, soap, deworming medicine)

SOAP, INDIA (8)

J-PAL (2011): Bulletin

→ Small fees cause big reduction in take up

Consumer financing: Affordability

"Sanitation and water facilities and services must be available for use at a price that is affordable to all people. The provision of services includes construction, maintenance of facilities, treatment of water and disposal of faecal matter. Paying for these services must not limit people's capacity to acquire other basic goods and services guaranteed by human rights, such as food, housing, health services and education."

Independent human rights expert

What means affordable?

Optimal affordability: overall water cost less than 3% of the household budget Intermediate affordability: overall water cost less than 5% of the household budget Minimal affordability: overall water cost less than 7% of the household budget

Payment schemes

- Direct purchase (particularly of fast moving goods such as chlorine)
- Payment in installments
- Payment through credits (microcredits)
- Partial of full subsidy

Promoting household water treatment

- Safe water has low priority
- Low willingness to pay for products
 → low-cost products → difficulty to
 establish viable businesses
- Lacking supply chains and difficult access to products and replacement parts
- Need to create demand and establish consistent water treatment
- Behavior change is a long term process - much effort required to establish new habits

Elements of sustainable safe water consumption eawag

Technology

Drinking water treatment

- Community level
- Household level

K108K (10.10 * cme

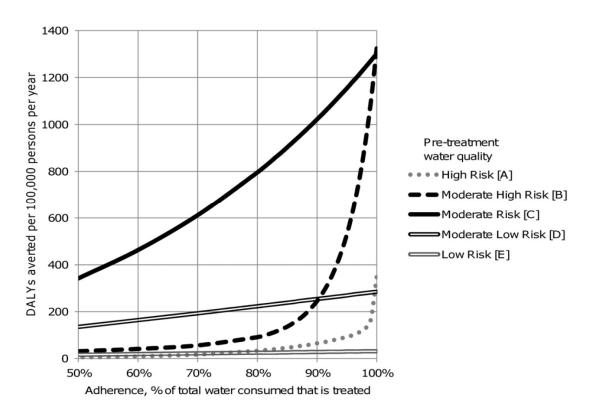
Safe Storage

- Business management
- Demand
- Price of water
- Price of HWTS products
- Supply chains

Behaviour

- Demand
- Know-how & capacity
- Consistent consumption

Effective & Consistent use

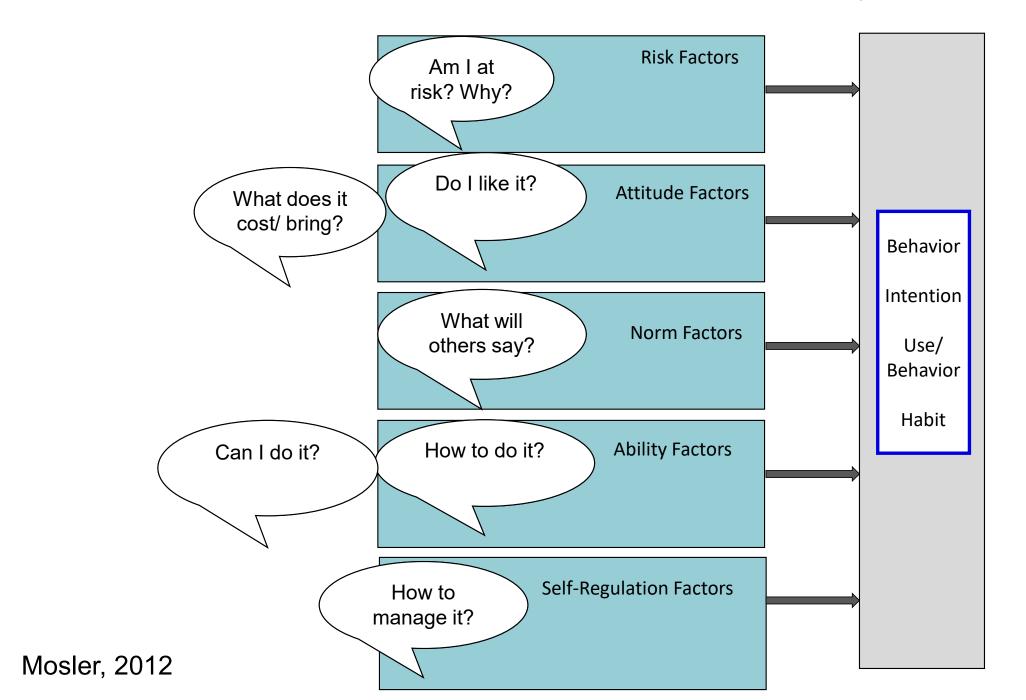


What is required to realize health improvements? An effective option for water treatment

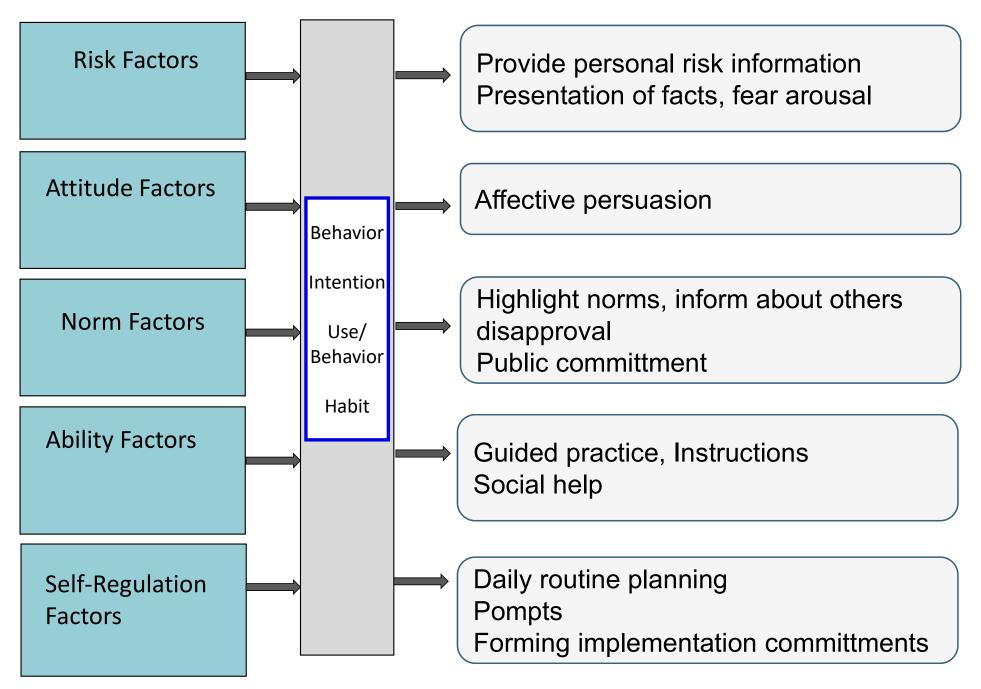
Efficacy: how well a method works under controlled conditions

Effectiveness: how well it works in the real world

Consistent use of the method/ consumption of clean water


DALYs averted per 100'000 persons per year, assuming:

- 2 log reduction in each pathogen class,
- Different raw water qualities
- Different levels of consistent consumption


Psychological factors for behavior

Behaviour change

Influence factors... on behavior

situation

campaigns

beliefs

external;	external;	internal;
unchangeable	changeable	changeable
Individual: age, gender, education, economic status Community: water source, urbanization,	 Communication channels Mass Media (many people reached) Interpersonal channels - household visits - trainings (less people more effective) Implementing organization Campaign content 	Risk beliefs Attitudinal beliefs Normative beliefs Ability/ control beliefs Self-Regulation

- Access to safe drinking water is a UN-recognized human right
- Safe drinking water must be available, accessible, of safe quality, acceptable and affordable
- To ensure sustainable access to safe drinking water, there are 3 aspects we work on : technology, business, behavior.
- Several water treatment technology exist with each pros and cons. They
 must be careful chosen to be context-specific and best address the
 issues of the situation
- Carefully determined business models are essential to ensure the sustainability of a solution. Challenges include low willingness to pay, creating demand and creating ownership.
- Behavior change is often necessary and challenging to achieve.
 Campaigns can act on a number of different factors to effectively enable change.